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Fourier transform ion cyclotron resonance (FT-ICR) mass spec- which links two weak-binders to produce potent inhibitst&SI-
trometry, unprecedented in mass resolution and mass measuremem¥lS is advantageous when probing important but weak solution
accuracy, combined with electrospray ionization (ESI) for top-down interactions, because the electrostatic component of an interaction
protein sequencing (as coined by McLafferty and co-wofers is enhanced in the gas phase; solution equilibrium constants do
delivers substantial sequence information from intact proteins, not predict gas phase avidiy.
especially when FT-ICRMS is armed with electron capture disso- Using a linear quadrupole ion trap coupled to FT-ICR (Thermo-
ciation (ECD)?# ECD is valued for top-down protein sequencing Finnigan LTQ-FT) free AS protein was subjected to CAD and
to locate post-translational modificatidffsecause ECD product  ECD. In denaturant (50% acetonitrile and 0.1% formic acid), CAD
ions arise from cleavages between most of the protein’s amino of 14+-charged AS produces b- and y-type products spanning
acids’ Following ECD with ion heating (e.g., infrared multiphoton  ~40% of the sequence. ECD of AS produces c- and z-type products
dissociation, IRMPD) increases sequencing Yyiéi@iddoreover, to span~33% of the sequence, generally from regions not covered
ESI-MS can measure proteifigand associations:'* Zubarev by CAD. Combining complementary CAD and ECD yields nearly
suggests that ECD can dissociate covalent bonds, yet retain otheis5% of the total sequence.
noncovalent bond®:13 A related technique, electron detachment ~ Top-down CAD-MS/MS (QqTOF and FT-ICR) and IRMPD
dissociation (EDD) was shown to preserve noncovalent bonding MS/MS (FT-ICR) of 1:1 AS-spermine 1, = 14662; 5uM AS
in negatively charged DNA duplexé&.Generally, collisionally and 100uM spermine, pH 6.8; Supporting Information) releases
activated dissociation (CAD) and IRMPD of noncovalent protein  spermine from theholo-protein, but ECD FT-ICRMS of non-
ligand complexes yields apoprotein, liberated ligand, and little or covalent AS-spermine yields information on ligand-bound sites
no binding site informatioA* In contrast, we demonstrate ECD’s by retaining spermineAs expected for a natively unstructured
special ability for revealing ligand binding sites in a noncovalent protein, the ESI charge state distribution does not change signifi-
o-synuclein (ASy-spermine complex. cantly upon increasing the solution pH (3 to 6.8) or adding spermine

Pathologically, Parkinson’s disease (PD) presents as intracellularjigand (Supporting Information). The average charge states mea-
inclusions (Lewy bodies) in the dopaminergic neurons of the sured by ESI-QqTOF-MS for thepo-protein are+15.6 and+15.8
substantia nigra and several other brain regions. Filamentous ASat pH 3 and pH 6.8, respectively. Spermine binding decreases the
(140 amino acidsM, = 14460) protein mainly comprises these average charge slightly t614.7, perhaps consistent with salt-bridge
deposits, and its aggregation is believed to play an important role jnteractions.
in PD. AS binding to natural polycations, for example, spermidine,  For the 14~ AS—spermine complexii/z 1048), nondissociative
spermine, and basic histone proteins, has a role in its aggrega-charge reduction to 8, 12+, and 11 is predominant (Figure 1,
tion.*>1® a-Synuclein is natively unfolded at physiological BH.  top). No products for the free ligand were observed. ECD effi-
Moreover, the C-terminal region is very acidic, presenting 5 aspartate ciencies for dissociating precursor ions can range from 5 to 30%
and 10 glutamate residues within residues-280. A previous  or lower because of concomitant charge reduction, highly dependent
NMR study suggests that spermind (= 202) binds to the AS  on precursor charge and the prot&@? The most abundant

C-terminal acidic region with solution binding affinit)g) of 0.6 fragments for AS-spermine were only-34% relative abundance.
mM.* ESI-MS titrations with a quadrupole time-of-flight (QTOF)  However, c- and z-products that retained ligand [e.gss (2
instrument estimate binding affinities 60.36 mM for the 1:1 AS spermine¥] localized near the C-terminus were observed fot-14

spermine complex (Supporting Information}Synuclein (GS) is  holo-protein, and not for 14 apoprotein vz 1034). Several y-type

60% similar to AS by amino acid sequence, but it lacks the acid- jons retained spermine [e.g. sy spermine}t] (Figure 1, bottom).

rich C-terminal domain. No GSspermine complex was found by Generation of y-products by ECD has been observed previgtily.

ESI-MS, confirming that the C-terminus is important for spermine  product ion yields are enhanced slightly by IR laser-heating after

binding. ECD, consistent with hydrogen bond retention upon ECD, followed
Despite a millimolar AS-spermine solution affinity, NMR and by dissociation upon heatirfg® In total, for 14+-charged AS-

this MS study strongly suggestspecificrather than nonspecific spermine, 82 unique product ions with an average mass accuracy

interaction. A small amount of nonspecific binding is likely present, 3 ppm were measured, representing 54 cleavages out of 139

as a 1:2 proteinligand complex is observed at higher concentra- ossible amino acid pairs. Remarkably, nearly 50% of the products
tions. However, recall that numerous specific biological interactions gtain spermine (28, 2, and 12 spermine-bound z-, c-, and y-type

display millimolar binding strengtt$ and that specific weak  igns respectively; 40 c-ions without spermine) (Figure 2). In no
interactions are exploited in the popular SAR-by-NMR method, jnstance was a pair of equivalent product ions observed reflecting
both spermine-bound and unbound status; for examplega z
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Figure 1. ECD mass spectrum of the 441:1 a-synuclein-spermine

complex Wz 1048; top), with expanded regions shown (bottom).
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Figure 2. ECD generated products from thefi4¢harged 1:Tx-synuclein-
spermine complex. Product ions that retain spermine binding are indicated
by the extra line underneath the fragments (é)g.,

nearly all N-terminal c-products do not include spermine. Further-
more, many of the 46 products (36, 9, and 1 c-, z-, and y-ions,
respectively) found by ECD of 14 apoprotein match observed
amino acid scissions for c-ions generated from holo-protein.

For 14+ AS—spermine, ligand binds between residues Gly106
and Pro138 based onzfyt- spermine¥™ and (Gsg + spermine)?*
products. Similar profiles were obtained by ECD of the+15
complex, as ( + spermine¥™ and (gso + spermine)® products
were measured. The earlier NMR titration'®fl-enriched AS with
spermine, monitoring backbone chemical shiftsi'®>N HSCQ
spectra, measured chemical shift changes in residues located in th
GIn109-Alal140 C-terminal region; residues Alal24, Glul26, Met127,

but also in the gas-phase complex, and is clearly specific, even in
a natively unstructured protein. Solution-phase structure is suffi-
ciently preserved in the gas-phase such that the positional informa-
tion of intermolecular interactions is not alter&dVe demonstrate
that ESI-ECD-MS/MS of protein noncovalent complexes reveals
contacts between protein and ligand and potentially for pretein
protein interfaces.
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